Architecture Level Power Reduction Method for Configurable Processor Generation

Hirofumi Iwato, Keishi Sakanushi Yoshinori Takeuchi, and Masaharu Imai

Graduate School of IST Osaka University, Japan

2008/06/24

©Integrated System Design Lab.

Outline

- □ Introduction
- □ Clock Gating
- VLIW Processor Generation Flow
- Extracting Non-Redundant Activation Conditions (NRAC)
- Experimental Results
- Conclusion

1

Background

VLIW Processors

VLIW Processors	 Advantage High Performance due to Instruction-set Level Parallelism (ILP) Less Power Consumption than
	Super Scalar Processor Issues to be Solved
Constraints Area Delay	 Better Design Space Exploration Methodology for Low Power VLIW Processors
Power	 Better Power Reduction Method for Configurable VLIW Processors

Outline

- Introduction
- Clock Gating
- VLIW Processor Generation Flow
- Extracting Non-Redundant Activation Conditions (NRAC)
- Experimental Results
- Conclusion

2008/06/24	©Integrated System Design Lab.

Clock Gating

5

Related Work (1)

 Power Compiler, Synopsys Inc.
 Clock gating insertion tool from RTL descriptions
 Power Compiler does not modify gating signals
 Monteiro, J.C., et al.: "Implicit FSM Decomposition applied to Low-Power Design," IEEE Trans. on VLSI Systems, Vol. 10, Issue 5, pp. 560-565, Oct. 2002.
 Improves Gating Signals by Reforming FSM

Controller based on FSM is NOT Suitable for Pipeline Processors

2008/06/24

©Integrated System Design Lab.

Related Work (2)

- Babighian, P., et al.: "A Scalable Algorithm for RTL Insertion of Gated Clocks based on ODCs Computation," IEEE Trans. on CAD of Integrated Circuits and Systems, Vol. 24, Issue 1, pp. 29-42, Jan. 2005
 - Improves Gating Signals by Calculating Observability Don't Care Conditions
 - Causes Enormous Amount of Area Overhead

7

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><table-row><table-row>

- □ Introduction
- Clock Gating
- □ VLIW Processor Generation Flow
- Extracting Non-Redundant Activation Conditions (NRAC)
- Experimental Results
- Conclusion

VLIW Processor Generation Flow

Outline

- □ Introduction
- Clock Gating
- VLIW Processor Generation Flow
- Extracting Non-Redundant Activation Conditions (NRAC)
- Experimental Results
- Conclusion

NRAC Extraction

- RCG (Resource Connection Graph) Extraction
- Merging RCG
- Signal Conflict Resolution
- Pipelining

2008/06/24

©Integrated System Design Lab.

13

RCG Extraction

Merging RCG

New Conditions of Merged Data Transfer

The Data Transfer Conditions are Unified

NRAC Extraction from Data Transfer Condition

NRAC for Pipeline Register Activation (1)

NRAC for Pipeline Register Activation (2)

Outline

- Introduction
- Clock Gating
- VLIW Processor Generation Flow
- Extracting Non-Redundant Activation Conditions (NRAC)
- Experimental Results
- Conclusion

Total Power Reduction

Total Power Reduction

Area vs. the Number of Parallel Issue Slot

Processor	Parallel Issue #			
FIOCESSOI	2	3	4	
Non-clock-gated	70,280	113,083	168,929	
Power Compiler	63,589	101,890	152,517	
Proposed Method	63,857	102,346	153,366	
Overhead(gates)	269	456	848	
Overhead(%)	0.42%	0.45%	0.56%	

(Unit : Gates)

Area Overhead is Negligible

2008/06/24

©Integrated System Design Lab.

23

Area Reduction by Clock Gating

Outline

- Introduction
- □ Clock Gating
- VLIW Processor Generation Flow
- Extracting Non-Redundant Activation Conditions (NRAC)
- Experimental Results
- Conclusion

©Integrated System Design Lab.

25

Conclusion

- A Low Power VLIW Processor Generation Method has been Proposed
- Experimental Results Show
 - Efficient Power Reduction
 - ~60% Less Power than Non-Clock-Gating
 - ~35% Less Power than Power Compiler
 - Power Reduction of Pipeline Register is Dominant
 ~70% Less Power than Non-Clock-Gating
 - □ ~60% Less Power than Power Compiler
 - Area Overhead is Negligible
 0.5% More Area than Power Compiler